organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

G. N. Anilkumar,^a M. K. Kokila,^b* Puttaraja,^b S. S. Karki^c and M. V. Kulkarni^d

^aDepartment of Physics, M. S. Ramaiah College of Arts, Science and Commerce, MSRIT Post, Bangalore 560 054, Karnataka, India, ^bDepartment of Physics, Bangalore University, Bangalore 560 056, Karnataka, India, ^cKLE Society's College of Pharmacy, II Block, Rajajinagar, Bangalore 560 010, Karnataka, India, and ^dDepartment of Chemistry, Karnatak University, Dharwad, Karnataka, India

Correspondence e-mail: prmkkgroup@gmail.com

Key indicators

Single-crystal X-ray study T = 291 KMean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.102 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

6-(4-Chlorophenyl)imidazo[2,1-*b*][1,3,4]thiadiazole-2-sulfonamide

The essentially planar title compound, $C_{10}H_7CIN_4O_2S_2$, features an intramolecular $C-H\cdots N$ hydrogen bond. The crystal strucutre is stabilized by intermolecular $N-H\cdots O$ hydrogen bonds formed between sulfonyl O atoms and amino groups.

Received 27 March 2006 Accepted 15 April 2006

Comment

The imidazo[2,1-*b*][1,3,4]thiadiazole ring system is the core skeleton of the well known immunomodulator levamisole (Amery & Hoerig, 1984). The anti-tumour potential of the 2amino-1,3,4-thiadiazole skeleton was recognized in the early 1950s (Oleson *et al.*, 1955) and subsequently its fusion with the imidazo[2,1-*b*] ring system has resulted in compounds with potential anticancer (Andreani *et al.*, 1996), analgesic (Khazi *et al.*, 1996), antibacterial (Gadad *et al.*, 2000), antisectretary (Andreani *et al.*, 2000) and cytotoxic activities (Gadad *et al.*, 1999). The title compound, (I), is one of a series of sulfonamides screened for their broad-spectrum antimicrobial activity (Gadad *et al.*, 1999) and it has now been investigated in order to ascertain its structural characteristics.

The entire molecule of (I) is essentially planar (Fig. 1). The exocyclic C2–S2 distance is, as expected, longer than the other C–S bonds (Table 1). There are deviations in the bond angles around the sp^2 atoms C1 and C6. Thus, the S1–C1–N1 angle of 137.63 (18)° allows the 1,3 electronic repulsions to be minimized. In the same way, the C5–C6–C7 angle of 128.7 (2)° also reduces interactions between the aromatic and imidazole rings. The coplanarity of the aromatic ring with the imidazole ring is evidenced by the torsion angle of 5.2 (1)° for C5–C6–C7–C8.

An intramolecular C12-H12 \cdots N1 hydrogen bond is shown in Fig. 1. Molecules are aggregated primarily *via* intermolecular N-H \cdots O bonds between SO₂NH₂ groups, as detailed in Table 2.

Experimental

The title compound (I) was prepared by condensing 2-amino-1,3,4-thiadiazole-5-sulfonamide $(0.01 \ M)$ with 4-chlorophenacyl bromide $(0.01 \ M)$ in an ethanol solution (50 ml) to give the hydrobromide salt which, on neutralization with a cold saturated sodium carbonate

A view of (I), with displacement ellipsoids drawn at the 50% probability level. The broken line indicates the intramolecular hydrogen bond.

Figure 2

A packing diagram for (I), with $N\!-\!H\!\cdots\!O$ hydrogen bonds shown as dashed lines.

solution, gave compound (I). This was purified and crystallized from a solution in a mixture of ethanol and dimethylformamide (1:1 v/v).

Crystal data

$M_r = 314.77$ Monoclinic, $P2_1/c$ a = 7.469 (2) Å b = 18.640 (5) Å c = 9.156 (3) Å a
Monoclinic, $P2_1/c$ a = 7.469 (2) Å b = 18.640 (5) Å c = 9.156 (3) Å a
a = 7.469 (2) Å b = 18.640 (5) Å c = 9.156 (3) Å $a = 102.408 (5)^{\circ}$
b = 18.640 (5) Å c = 9.156 (3) Å
c = 9.156 (3) Å
0 102 400 (5)0
$\beta = 103.408(5)^{\circ}$
V = 1239.9 (6) Å ³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick 1996) $T_{\rm min} = 0.796, T_{\rm max} = 0.854$ Z = 4 D_x = 1.686 Mg m⁻³ Mo K α radiation μ = 0.65 mm⁻¹ T = 291 (2) K Block, colourless 0.35 × 0.31 × 0.25 mm

9149 measured reflections 2298 independent reflections 2103 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$ $\theta_{\text{max}} = 25.5^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0565P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.6933P]
$vR(F^2) = 0.102$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
298 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ \AA}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	

Table 1

Selected geometric parameters (Å, °).

1.580 (2)	S1-C2	1.741 (2)
1.4232 (19)	\$2-C2	1.778 (2)
1.4221 (18)	C6-C7	1.465 (3)
1.726 (2)		
137.63 (18)	C5-C6-C7	128.7 (2)
47.2 (2)	C5-C6-C7-C12	174.5 (2)
-68.3 (2)	C5-C6-C7-C8	-5.2 (4)
	1.580 (2) 1.4232 (19) 1.4221 (18) 1.726 (2) 137.63 (18) 47.2 (2) -68.3 (2)	$\begin{array}{ccccc} 1.580 & (2) & S1-C2 \\ 1.4232 & (19) & S2-C2 \\ 1.4221 & (18) & C6-C7 \\ 1.726 & (2) & & & \\ 137.63 & (18) & C5-C6-C7 \\ \hline & 47.2 & (2) & C5-C6-C7-C12 \\ -68.3 & (2) & C5-C6-C7-C8 \end{array}$

Table 2	
Hydrogen-bond geometry (Å, °)	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O2^{i}$	0.78 (3)	2.23 (3)	2.955 (3)	155 (3)
$N2-H2B\cdots N1^{ii}$	0.82(3)	2.04 (3)	2.853 (3)	167 (3)
C8−H8···O2 ⁱⁱⁱ	0.93 (3)	2.56 (3)	3.315 (3)	139 (2)
C12−H12···N1	0.94 (3)	2.54 (3)	2.876 (4)	101 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z; (iii) -x, -y, -z + 1.

All H atoms were refined without constraint, the final C–H and N–H bond lengths being in the ranges 0.84(3)–0.94(3) Å and 0.77(3)–0.82(3) Å, respectively.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1993); software used to prepare material for publication: *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and Department of Science and Technology, India, for data collection on the CCD facility and Bangalore University. The authors are also thankful to Wyeth Pharma Ltd., Gujarat, for providing chemicals for the synthesis. One of the authors (GNA) thanks the M. S. Ramaiah College of Arts, Science and Commerce for encouragement and support.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Amery, W. K. & Hoerig, C. H. (1984). Immune Modulation Agents and their Mechanism, edited by R. I. Fenichel & M. A. Chirigos, pp. 383–408. New York, Basel: Marcel Dekker.
- Andreani, A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Simon, W. A. & Senn-Bilfinger, J. (2000). Arzneim-Forsch. Drug Res. 50, 550–553.
- Andreani, A., Rambaldi, M., Leoni, A., Locatelli, A. & Bossa, R. (1996). J. Med. Chem. 39, 2852–2855.
- Bruker (1998). *SMART* (Version 5.0) and *SAINT* (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gadad, A. K., Karki, S. S., Rajurkar, V. G. & Bhongade, B. A. (1999). Arzneim-Forsch. Drug Res. 49, 858–863.
- Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Rajurkar, V. G. (2000). *Eur. J. Med. Chem.* **35**, 853–857.
- Khazi, I. A. M., Mahajanshetti, C. S., Gadad, A. K., Tarnalli, A. D. & Sultanpur, C. M. (1996). Arzneim. Forsch. Drug Res. 46, 949–952.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Oleson, J. J., Slobada, A., Troy, W. P., Halliday, S. L., Landes, M. J., Angier, R. B., Semb, K., Cyr, J. & Williams, J. H. (1955). J. Am. Chem. Soc. 77, 6713– 6714.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.